• When you click on links to various merchants on this site and make a purchase, this can result in this site earning a commission. Affiliate programs and affiliations include, but are not limited to, the eBay Partner Network.

Archived

This topic is now archived and is closed to further replies.

All the rage on Facebook - English Auctions.

18 posts in this topic

I seem to see these types of auctions popping up all over the place on the comic pages on Facebook - any thoughts on the pros and cons of this type of auction? It looks like its a great way to quickly move a ton of books but it really depends on there being a large group of people available and actively bidding.

 

Why is this type of auction not made its way onto the forum?

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

I was hoping someone would explain it to me :cry: It looks like a stream of very short (10 minute or so) auctions. I ended up hopping on one yesterday and won an ok Avengers 196 for $17 but the whole thing was confusing to me. There seems to be at least 2 or 3 threads popping up all the time now.

 

How do you post a link to a Facebook thread?

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

 

You lost me at "It's very simple"

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

 

4029627-what_zpsghzzrogo.jpg

Link to comment
Share on other sites

I was hoping someone would explain it to me :cry: It looks like a stream of very short (10 minute or so) auctions.

 

Just imagine how many people would post :frustrated: after missing a good one! It would probably be a mess to keep track of too, can't do seperate threads here like you can there.

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

 

You lost me at "It's very simple"

Right, "simple" for those with a mathematic mind, maybe.

 

Hey, aren’t you a Cool engineer? lol

Link to comment
Share on other sites

 

There are two things to consider when trying to understand these types of auctions:

 

1) Most people are too dumb to even know how to count properly.

 

 

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

 

lol

 

I took a break from my angry, knicker-twisted rage posting to laugh at this very funny post.

 

:D

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

 

Please explain this in English.

Link to comment
Share on other sites

Could you explain what it is? (shrug)

 

It's very simple...

 

Assume that an item is being offered in an English auction with only two risk-neutral bidders, bidders 1 and 2. The seller and bidder j (j=1,2) know that bidder i's valuation of the item is either vil with probability pi or vih with probability 1-pi (i=2,1). Suppose that 0< vil < vih for i=1,2. Assume further that the valuation of the item is independent among bidders (this corresponds to assumption A2, independent-private-values). Also, assume that v1l=v2l=:vl, v1h=v2h=:vh and p1=p2=:P (this corresponds to assumption A3, symmetric information). The payoff function for bidder i (=1,2), is either 0 if he never bids over bidder j (=2,1), or vl-(i's bid), or vh-(i's bid), depending on his/her valuation of the item, if he bids over bidder j (=2,1). Clearly the payoff function in this case is a function of the bids alone and assumption A4 holds (see figure). It seems to be clear that in this case bidders do not bid over their own valuation, and the winner of the auction is the bidder with the highest valuation who calls his/her bid first. The price he/she will pay for the item is equal to the valuation of the other bidder which is equal to the lowest valuation.

 

english_image.png

 

 

pWexNNy.gif

Link to comment
Share on other sites